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Comparison of four state observer design algorithms
for MIMO system

VINODH KUMAR. E, JOVITHA JEROME and S. AYYAPPAN

A state observer is a system that models a real system in order to provide an estimate of
the internal state of the system. The design techniques and comparison of four different types
of state observers are presented in this paper. The considered observers include Luenberger
observer, Kalman observer, unknown input observer and sliding mode observer. The application
of these observers to a Multiple Input Multiple Output (MIMO) DC servo motor model and the
performance of observers is assessed. In order to evaluate the effectiveness of these schemes,
the simulated results on the position of DC servo motor in terms of residuals including white
noise disturbance and additive faults are compared.
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1. Introduction

A state observer is typically a computer implemented mathematical model and it
provides the estimation of the internal states of the system. In most practical cases, the
physical state of the system cannot be determined by direct observation. Instead, indi-
rect effects of the internal state are observed by way of the system outputs. Luenberger
Observer possesses a relatively simple design that makes it an attractive general design
technique [1]. Later, the Luenberger observer was extended to form a Kalman filter [2].
Although the Kalman filter is in use for more than 30 years and has been described in
many papers and books, its design is still an area of concern for many researches and
studies. It could be argued that the Kalman filter is one of the good observers against a
wide range of disturbances.

The problem of estimating a state of a dynamical system driven by unknown inputs
has been the subject of a large number of studies in the past three decades. An observer
that is capable of estimating the state of a linear system with unknown inputs can also
be of tremendous use when dealing with the problem of instrument fault detection, since
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in such systems most actuator faults can be generally modeled as unknown inputs to
the system [3, 4]. A new methodology for fault detection and identification subject to
plant parameter uncertainties is presented in [5]. A full-order unknown input and output
structure is used in order to generate residuals, which can be used to detect fault and
isolate on a vertically taking-off and landing aircraft dynamic model in [7]. Designing
the unknown input and output observer was reported by considering the unknown con-
stant disturbance of parameters in chaotic systems in [8]. However, when the number of
sensors and unknown inputs are equal, the observer may not exist. Hence, the unknown
input observer method is not always feasible for fault detection.

A key feature in the Utkin observer [9] is the introduction of a switching function in
the observer to achieve a sliding mode and also stable error dynamics. This sliding mode
characteristic which is a consequence of the switching function is claimed to result in
system performance which includes insensitivity to parameter variations, and complete
rejection of disturbances. In this paper, a DC servo motor is considered as multiple inputs
and multiple outputs (MIMO) model. The model is controllable and observable [11].
Moreover, the continuous linear system has been discretized [12] with the sampling time
of 0.1 second.

The organization of the paper is as follows. In Section 2 the modeling of DC Servo
Motor is given in detail. The various models of state observers are briefed in section 3
The simulation results to a DC Servo Motor system are reported in section 4. Finally the
comparison among the four observers is given in the conclusion.

2. Modeling of DC servo motor

A DC motor is a second order system with multiple input and multiple outputs.
The model [6] is designed according to the parameters, armature resistance, armature
inductance, magnetic flux, voltage drop factor, inertia constant and viscous friction. It
is studied as a linear system. The inputs are the armature voltage UA(t) and the load
torque ML(t). In simulation the armature voltage is given as a step function while the
load torque is given a fixed value of 0.1. The measured output signals are the armature
current IA(t) and the speed of the motor ω(t). Fig. 1 shows the model of the DC motor.

 

 

 

Figure 1. Signal flow diagram of the considered DC motor.
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The values of parameters are as follows. Armature resistance Ra = 1.52 Ω. Armature
inductance La = 6.82·10−3 Ω s. Magnetic flux ψ = 0.33 V s. Inertia constant J = 0.0192
kg m2. Viscous friction MFl = 0.36 ·10−3 Nms.

The armature current IA(t) and armature speed ω(t) are represented as in the follow-
ing

LaİA (t) =−RaIA (t)−ψω(t)−UA (t)
(1)

Jω̇(t) = ψIA (t)−MFlω(t)−ML (t)

The general continuous state space form with faults or disturbance is represented as

ẋ(t) = Fx(t)+Gu(t)+Ll fl(t) (2)

y(t) =Cx(t)+Du(t)+Mm fm(t) (3)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rm represents control input vector, y(t) ∈ Rp is a
measurement output vector, F , G, C and D are known constant matrices. The continuous
time system (2) can be discretised using 0.1 second sampling time to obtain the discrete
time model represented as follows.

x(k+1) = Ax(k)+Bu(k)+L fl(k)
(4)

y(k) =Cx(k)+Du(k)+M fm(k)

where A = eFT , T is sampling time; B = TAG, L = T FLl and M = Mm.
The continuous time model of a DC motor as a state space form is thus of the form[
İA(t)
ω̇(t)

]
=

[
−Ra/La −ψ/La

ψ/J −MF1/J

][
IA(t)
ω(t)

]
+

[
1/La 0

0 −1/J

][
UA(t)
ML(t)

]
(5)

[
y1(t)
y2(t)

]
=

[
IA(t)
ω(t)

]
=

[
1 0
0 1

][
IA(t)
ω(t)

]
+[0 0]

[
UA(t)
ML(t)

]
(6)

3. Models of observers

3.1. Luenberger observer

For continuous time linear system

ẋ(t) = Ax(t)+Bu(t)
(7)

y(t) = Cx(t)
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where x ∈ Rn, u ∈ Rm, y ∈ Rr, a linear system observer equation is given by
˙̂x(t) = Ax̂(t)+Bu(t)+L[y(t)− ŷ(t)]

(8)
ŷ(t) = Cx̂(t).

Observer error is defined as
e = x− x̂. (9)

Differentiating equation (9)
ė = ẋ− ˙̂x (10)

and substituting equations (7), (8) into (10) we get

ė = Ax+Bu− [Ax̂+Bu+L(y− ŷ)] (11)

or
ė = A(x− x̂)−L(y− ŷ)] (12)

and with (7)
ė = A(x− x̂)−LC(x− x̂)] (13)

ė = (A−LC)e. (14)

Solution of eqn. (14) is given by

e(t) = eA−LCe(0) (15)

The eigenvalues of the matrix A−LC can be made arbitrary by appropriate choice of the
observer gain L, when the pair [A,C] is observable (i.e. observability condition holds).
So the observer error e → 0 when t → ∞.

The given system is observable if and only if the n × n matrix,
[CT ATCT . . . (AT )(n−1)CT ] is of rank n. This matrix is called the observability
matrix.

Design of plant gain and observer gain

For plant gain, characteristic equation becomes

|sI −A+BK|= (s−µ1)(s−µ2) . . .(s−µn) (16)

where µ1, µ2, ..., µn, are desired closed loop poles of the plant. K is state feedback gain
matrix.

For observer gain, characteristic equation becomes

|sI −A+BK|= (s−µ1ob)(s−µ2ob) . . .(s−µnob) (17)

where µ1ob, µ2ob, ..., µnob, are desired closed loop poles of the observer.
The observer gain is chosen in such a way that observer responds 5 to 10 times faster

than plant response. One should consider that system which responds faster requires
more energy to control and heavier actuator to control. Desired dominant pole location
should be far away from the jω axis. Fig. 2 shows the block diagram of Luenberger
observer.
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Figure 2. Block diagram of Luenberger observer.

3.2. Kalman observer

Kalman observer is a recursive predictive filter that is based on the use of state space
techniques and recursive algorithms, i.e. only the estimated state from the previous time
step and the current measurement are needed to compute the estimate of the current
state. The Kalman filter operates by propagating the mean and covariance of the state
through time. The notation X̂n|m represents the estimate of the state vector X at time n
given observations up to and including time m. The state of the filter is represented by
two variables:

• X̂k|k, the a posteriori state estimate at time k given observations up to and including
at time k,

• Pk|k, the a posteriori error covariance matrix (a measure of the estimated accuracy
of the state estimate).

The Kalman filter has two distinct phases, prediction and correction. The prediction
phase uses the state estimate from the previous time step to produce an estimate of the
state at the current time step. This predicted state estimate is also known as the a priori
state estimate because, although it is an estimate of the state at the current time step,
it does not include observation information from the current time step. In the correction
phase, the current apriori prediction is combined with current observation information to
refine the state estimate. This improved estimate is termed the a posteriori state estimate.
The block diagram of Kalman observer is shown in Fig. 3.

Typically, the two phases alternate, with the prediction advancing the state until the
next scheduled observation, and the correction incorporating the observation. However,
this is not necessary, if an observation is unavailable for some reason, the update may
be skipped and multiple prediction steps are performed. Consider a linear time invariant
discrete system given by the following equation

Xk+1 = FXk +Buk (18)
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Figure 3. Block diagram of Kalman observer.

Zk+1 = HXk+1 +Vk+1 (19)

where F is the state transition matrix, B is the control input matrix, Wk is the process
noise with zero mean multivariate normal distribution having covariance Qk, H is the
observation matrix, Vk+1 is the observation noise which is zero mean Gaussian white
noise having covariance? Rk, uk is the control input.

Prediction (time update) equations

Predicted state estimate is as follows

X̂k|k−1 = FX̂k−1|k−1 +Buk (20)

and predicted estimate covariance

Pk|k−1 = FPk−1|k−1FT
k +Qk. (21)

Correction (measurement update) equations

Innovation or measurement residual is as follows

ỹk = Zk −HX̂k|k−1 (22)

and innovation (or residual) covariance

Sk = HPk|k−1HT +Rk. (23)

Optimal Kalman gain is then
Kk = Pk|k−1HT S−1

k . (24)
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Updated (a posteriori) state estimate takes a formula

X̂k|k = X̂k|k−1 +Kkỹk (25)

and updated (a posteriori) estimate covariance

Pk|k = (I −KkH)Pk|k−1 (26)

Unknown input observer

Consider a continuous linear time invariant steady space model of the system

ẋ(t) = Ax(t)+Bu(t)+Ed(t)
(27)

y(t) = Cx(t)

where x ∈ Rn is the state vector, u is input vector, y is sensor output, A is system co-
efficient matrix, B is input coefficient matrix, C is output coefficient matrix, d ∈ Rq is
the unknown input vector, and E ∈ Rn×q is the unknown input distribution matrix. The
structure of the unknown input observer is described as [5]

ż(t) = Fx(t)+T Bu(t)+Ky(t)
(28)

x̂(t) = z(t)+Hy(t)

where x̂∈Rn is the estimated state vector, T ∈Rn×n, K ∈Rn×n and H ∈Rn×n are matrices
satisfying certain requirements.

The block diagram of unknown input observer is shown in Fig. 4.

Figure 4. Block diagram of unknown input observer.
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The error vector is given by

e(t) = x(t)− x̂(t). (29)

The state estimation error is governed by the following equation

e(t) = x(t)− x̂(t) = x(t)− z(t)−Hy(t) = x(t)− z(t)−HCx(t)
(30)

= (I −HC)x(t)− z(t).

Using eqn. (30), derivative of the vector is obtained

ė(t) = (A−HCA−K1C)e(t)+(A−HCA−K1C)z(t)+(A−HCA−K1C)Hy(t)
+ (I −HC)Bu(t)+(I −HC)Ed(t)−Fz(t)−T Bu(t)−K2y(t) =

(31)
= (A−HCA−K1C)e(t)+ [F − (A−HCA−K1C)]z(t)
− [K2 − (A−HCA−K1C)]Hy(t)− [K2 − (A−HCA−K1C)]Hy(t)

The following relations hold true:

(HC− I)E = 0 (32)

T = (I −HC) (33)

F = A−HCA−K1CK2 (34)

K2 = FH (35)

K = K1 +K2. (36)

Derivative of the error vector (31) will be ė(t) = Fe(t) and then the solution of the error
vector is e(t) = eFte(0). If F is chosen as a Hurwitz matrix, the solution of the error
equation goes to zero asymptotically. So, x̂ converges to x.

Necessary and sufficient conditions for the observer (28) to be a unknown input
observer for defined system in (27) are [7]:

(i) rank(CE) = rank(E),

(ii) (C,A1) is a detectable pair,

where A1 = A−E[(CE)TCE]−1(CE)TCA. A flow chart of design procedure is shown in
Fig. 5.
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Figure 5. Flow chart of design procedure.

3.3. Sliding mode observer

A brief review of Utkin observer [9, 10] is presented here. Consider a continuous
time linear system described by

ẋ(t) = Ax(t)+Bu(t) (37)

y(t) =Cx(t) (38)

where A ∈ Rn×n, B ∈ Rn×m and p ¬ m. Assume that the matrices B and C are of full
rank and pair (A,C) is observable. As the outputs are to be considered, it is logical to
effect a change of coordinates so that the outputs appear as components of the states.
One possibility is to consider the transformation x → Tcx, where

Tc =

[
Nc

0

]
(39)
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and the columns of Nc ∈ Rn×(n−p) span the null space of C. This transformation is non-
singular, and with respect to this new coordinate system, the new output distribution
matrix is

CT−1
c = [0 Ip] (40)

where p is the number of system output and n is the order of the system.
If the other system matrices are written as

TcAT−1
c =

[
A11

A21

A12

A22

]
(41)

TcB =

[
B1

B2

]
(42)

then the nominal system can be written as

ẋ1(t) = A11x1(t)+A12y(t)+B1u(t) (43)

y(t) = A21x1(t)+A22y(t)+B2u(t) (44)

where

Tcx =

[
x1

y

]
. (45)

The observer proposed by Utkin has the form

ẋ1(t) = A11x1(t)+A12y(t)+B1u(t)+Lv (46)

y(t) = A21x1(t)+A22y(t)+B2u(t)− v (47)

where (x̂1, ŷ1) represent the state estimates for (x1,y1),L ∈ R(n×p)×p is a constant feed-
back gain matrix and the discontinuous vector v is defined component wise by

vi = Msgn(ŷi − yi) (48)

where M ∈ R+. The errors between the estimates and the true states are e1 = x̂1 −x1 and
ey = ŷ− y.

4. Simulation results

Figures 6-9 present results of simulations of observers with additive fault. Figures
10-13 present results of simulations of observers with disturbance (white noise). Figures
14-17 present plots of simulated state variable (position).
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Figure 6. Residual of Luenberger observer. Figure 7. Residual of Kalman observer.

Figure 8. Residual of unknown input observer. Figure 9. Residual of sliding mode observer.

Figure 10. Residual of Luenberger observer. Figure 11. Residual of Kalman observer.

Comparisons of the results

Table 1 shows the comparison factors depending on the results of the simulations of
the designed observers. The effectiveness of each observer is compared according to the
additive faults and the disturbance. Comparing according to the additive faults, range
of the residual of Luenberger observer is the least one while the residual of Kalman
observer is the highest and comparing according to the disturbance, range of the residual
of sliding mode observer is the least one while the residual of Luenberger observer is the
highest.
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Figure 12. Residual of unknown input observer. Figure 13. Residual of sliding mode observer.

Figure 14. State variable x1 of Luenberger observer. i Figure 15. State variable x1 of Kalman observer.

Figure 16. State variable x1 of unknown input ob-
server. Figure 17. State variable x1 of sliding mode observer.

Table 1. Comparison factors of observers

Design of Residual Residual
Observer gain (with additive (with

matrix faults) disturbance)

Luenberger Pole placement -0.002 to 0.004 -0.04 to 0.06

Kalman Using correction matrix -0.01 to 0.025 -0.05 to 0.05

unknown input Pole placement -0.015 to 0.01 -0.015 to 0.02

sliding mode Pole placement -0.015 to 0.05 -0.01 to 0.01



COMPARISON OF FOUR STATE OBSERVER DESIGN ALGORITHMS FOR MIMO SYSTEM 143

5. Conclusion

In this paper, a comparative study on four kinds of state observers (Luenberger
observer, Kalman observer, unknown input observer and sliding mode observer) for a
MIMO based DC servo motor system is presented. The computational criterion chosen
is the amplitude of residual for both white noise disturbance and additive faults. The
performance is assessed by considering the same, assumed values of disturbance and ad-
ditive faults. The simulated results show that the performance of sliding mode observer
is superior in terms of the disturbance rejection compared with other observers.
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